Challenges in the Evaluations of Fission Data

Resolving Discrepancies, Using Fundamental & Integral Data

Mark B. Chadwick
Program Director, Science Campaigns, ADX
Los Alamos National Laboratory

Overview:
Challenges we face in evaluation
Three examples : FPY, PFNS, fission cross sections
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Key Messages

=  Advancing our fission understanding, as embodied in ENDF files, will
require integrated efforts in theory, experiment, & simulation

=  Small scale science & integral measurements both essential

= Our progress is slow
« Difficult problems take a long time to solve
 Even when they're "“solved” we must corroborate our findings
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Challenges in Creating Evaluated Data Files, Based on
Experiment, Theory, Statistical Analyses & Integral Data

= We endeavor to represent the reactions in the most accurate way possible —
both physical fidelity, and numerical fidelity & completeness

m  Experiments often discrepant. Evaluations are are best estimates with
credible covariances

x Often much data already exists
 How to best incorporate new information from latest “"best ever” experiments, with
supposedly smaller (& different) systematical errors [TPC, Chi-nu experiments]

= How to incorporate integral information ?
o K-eff criticality
e Semi-integral
reaction rates (cross sections in broad sources)
transmission data
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ENDF files serve many purposes

=  Most accurate understanding of certain reactions, cross sections
e Standards (IAEA, NEA, ENDF)
* Repository for our advancing knowledge — stewarded by DOE/Science

m Usage in nuclear technologies, where predicting certain integral
quantities accurately is essential

 Transport
e Criticality Significant $ in this ($B) DOE/
 Energy deposition NNSA, NE, ...

e Activation

It is a challenge to satisfy all these goals, given
our incomplete knowledge & understanding, &
the range of our “customers”
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This can lead to religious wars between two factions

m  One extreme: The fundamental-science fundamentalists
* Respect only differential measurements
 Abhor integral data, and usually don’t understand the applications
» Perfectly happy to get the wrong integral answers for the right reasons
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NATIONAL LABORATORY UNCLASSIFIED Slide 5

EST.1943

Operated by Los Alamos National Security, LLC for NNSA Fiesta Conference, Santa Fe, Sept 11 2014 //%AVIAVD%%



This can lead to religious wars between two factions

m  One extreme: The fundamental-science fundamentalists
* Respect only differential measurements
 Abhor integral data, and usually don’t understand the applications
» Perfectly happy to get the wrong integral answers for the right reasons

m The other extreme: the integral-science insurgents
 Want an answer, don’t care where it came from
* Understand the mission imperative to get the right answer for integral problems
e But under-estimate the dangers of extrapolation error
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This can lead to religious wars between two factions

m  One extreme: The fundamental-science fundamentalists
* Respect only differential measurements
 Abhor integral data, and usually don’t understand the applications
» Perfectly happy to get the wrong integral answers for the right reasons

m The other extreme: the integral-science insurgents
 Want an answer, don’t care where it came from
* Understand the mission imperative to get the right answer for integral problems
e But under-estimate the dangers of extrapolation error

ENDF/B-VII strives for good judgment in seeking the middle ground:
- more rigorous and defensible, using many advances in physics, methods

- but judicious (even ad-hoc) “tweaks” made for integral performance

- created trust with our users, cited >4000 times
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And By The Way, This Issue is Everywhere

= Material science
e metallurgy “heat and beat”
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And By The Way, This Issue is Everywhere

= Material science MaRIE 1.0: A Flagship Facility
« , for Predicting and Controlling
 metallurgy “heat and beat Wizl o [0 maite Dss e s

e v. fundamental physics “micron gap” MaRIE
— Los Alamos’ vision for a future flagship facility

A proposal submitted by Loz Alamos National Laboratory in responze to
the NNSA call for New Fl:gzhip Experimental ST&E Facility Concepts.

Los Alamos’ history is of solving challenging multi-

physics problems using both approaches synergistically
» Los Alamos
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Example 1: Fission Product Yield (FPY) Evaluations to
Resolve a Longstanding LANL-LLNL Discrepancy

The issue
= Los Alamos & Livermore were 147Nd FPY Data set seemed
discrepant on their views of the 23°Pu to exhibit discrepant data
147Nd FPY (~10% spread):
= Led to an offset in the “fission basis” . 2.30 ) )
S LANL, crlt%ssemblles
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Experiment label
Goal: Resolve discrepancies & seek
s T e Aoent e o understanding @ ~ 2% level
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Evaluation Work Looks for Patterns..
Allowed us to Determine the 147Nd FPY to ~2% @ 1.5 MeV

A statistical meta-analysis supported

|dentification of an energy- our LANL understanding

dependence
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Next steps: corroborate our understanding with experiments &
initiate a theory effort to understand FPY energy dependencies
. Los Alamos (see talks from Lestone, Sierk, Moller, & Younes work)
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Theory progress on broader understanding of
trends of FPY energy-dependencies in fast range

Lestone predictions (black points) o
compared with our ENDF/B-VII.1 New Moller predictions
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FIG. 29: The relative percentage changes in the n + “*Pu 147Nd FPY haS S“g htly

FPY per MeV increase in the energy of the incident neutron L.
versus the fission-fragment mass number. The solid-black cir- pOSltlve energy trend
cles show our calculated relative yield changes from E,.=0 to
2 MeV. The green curve shows the relative changes between
7 broadened ENDF/B-VIL1 FPY at E,,=0.5 and 2.0 MeV. The
red curve shows the relative changes per MeV between the 'ED
E.=0 and 2.0 MeV ENDF/B-VIIL1 evaluations.
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Follow- on Experiments from TUNL-LANL-LLNL Team

Progress

New TUNL data support our
predictions for 147Nd

= Probably best-ever activation
measurements now made, at various
mono-energetic energies (see
Gooden, Tonchev talks)

(see Gooden, Tonchev, Vieira,
m Corroborate our understanding at Wilhelmy, et a.)

fission spectrum energies

= But raised new questions
e But raised more questions, e.g. 14 MeV
* Energy dependencies as a func. of A

Next steps, to help resolve these questons...
SPIDER detector measurements (Toveson)

» Los Alamos
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Example 2: Prompt Fission Neutron Spectrum....

= Theory and experiment are both essential

= Both face challenges
e Theory predictive power is weak — different assumptions give vastly different predictions
* Experiments suffer from a wide range of systematic error (data are all over the map)
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Prompt Fission Neutron Spectrum n(0.5 MeV)+23°Pu
- With International Collaboration Via an IAEA CRP

s Recent evaluations from T-Division based on:

e Extended Los Alamos model (anisotropy, different temperatures in light and
heavy fragments, etc.)

e Extensive analysis of past and present experimental data and setups
 Use of NUEX data

e Generalized least-square 14 — o T T i
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Extend up to 30 MeV

- Study from thermal to 30 MeV E,.

- New data by CEA/LANL - Chatillon et al.,

BRC, 2014

- Take account of multi-chance fission and
pre-equilibrium contributions

We recognized that a new LANL-LLNL
experimental effort would be needed to
reduce PFNS uncertainties — Chi-nu

But we are learning the challenges of
identifying & reducing syst. errors

-Errors plagued previous experiments

-MCNP simulation is now playing a much
, larger role in guiding exp design
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PFNS Solution will depend upon insights from Chi-nu &
from various integral experiments

Activation — for the high-energy tail

Selected Spectral Index Data for the Central Region of Jezebel
or Flattop-Pu (with ENDF/B-VII.1 Cross Sections)
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Example 3: Resolving Fission Cross Section
Discrepancies will Require TPC

23'Np(n,f)
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LANL notes that semi-
integral LANL fission
spectral indices in crits
support ENDF data

CERN responds that
puzzles regarding the
simulation of the
LANL-integral crit data
for our Np-HEU sphere
can be explained by
their data
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Example 3: Resolving Fission Cross Section

Discrepancies will Require TPC

TABLE XXIX: Comparison of calculated spectra indices for ENDF /B-VIL.0 with measured values in the center of various
Los Alamos critical assemblies. U238f/U235f refers to the 238U fission rate divided by the 25U fission rate, etc. Because
2381 and 2*"Np are threshold fissioners, the spectral indices for these isotopes (in ratio to 235U) measure the hardness of the
neutron spectrum in the assembly Exp-A refers to experimental data as documented in the CSEWG Fast Reactor Benchmark
Compilation, BNL 19302 (June 1973); Exp-B refers to the same measurements, but as reanalyzed by G. Hansen, one of the lead
experimentalists, and transmitted to R. MacFarlane in 1984. The C/E ratios are based on the Hansen values where available.

Assembly | Quantity |U2387/U235] |Np237//U2357 [U2337/U2357 [Pu230f /U235
Godiva | Calc 0.15774 0.83002 1.56884 1.38252
(HMF001) |Exp-B  |0.1643 £0.0018|0.8516+0.012 1.4152 + 0.014
Exp-A  |0.1642 £0.0018(0.837 £0.013 [1.50+£0.03  |1.402+0.025
Cale/Exp|C/E=0.9601 |C/E=09747 |C/E=0.9867 |C/E=0.9769
Jezebel  |Calc 0.20854 0.97162 1.55632 1.42453
(PMF001) |Exp-B  0.2133 £0.0023|0.9835 +0.014 1.4609 + 0.013
Exp-A |0.2137 £0.0023|0.962 £0.016 |1.578 £0.027 |1.448 +0.029
Cale/Exp|C/E=0.9777 |C/E=0.9879 |C/E=0.9863 |C/E=0.9751
Jozebel-23 |Calc 0.21065 0.98111
(UMF001) |Exp-B  |0.2131 £0.0026(0.9970 +0.015
Exp-A |0.2131 +0.0023[0.977 £0.016
Cale/Exp|C/E=0.9885 |C/E=0.9841
Flattop-25 |Calc 0.14443 0.77114 156725 1.35018
(HMF028) |Exp-B  |0.1492 +£0.0016[0.7804 +0.01 [1.608 +0.003 |1.3847 +0.012
Exp-A  [0.149 £0.002 [0.76 +0.01 1.60 £0.003  |1.37 £0.02
Cale/Exp|C/E=0.9681 |C/E=0.9881 |C/E=0.9747 |C/E=0.9816
Flattop-Pu|Calc 0.17703 0.85254
(PMF006) |Exp-B  |0.1799 +£0.002 |0.8561 +0.012
Exp-A  [0.180 £0.003 |0.84 +0.01
Cale/Exp|C/E=0.9840 |C/E=0.9958
Flattop-23 |Calc 0.18601 0.90801
(UMF006) |Exp-B  |0.1916 +0.0021(0.9103 +0.013
Exp-A |0.191 £0.003 [0.80 +0.01
Cale/Exp|C/E=0.9755 |C/E=0.9975
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Future: In Addition to Synthesizing Cross Section &
Integral Data, Future Evaluations Grounded in
Full Correlations of Fission Data & Model Calculations

=  Ongoing NA-22 project: CGMF & FREYA in MCNP6
“Developing Accurate Simulations of Correlated Data in Fission Events”

m Advances include:

e Predicting correlations and distributions of prompt neutrons and photons on an
event-by-event basis (CGMF- Talou, Stetcu, Kawano; FREYA- Vogt, Randrup)

* New and unique experimental data to benchmark
model predictions

— Univ. Michigan, S.Pozzi et al., MCNPX-PoLiMi
— DANCE, M.Jandel et al.
e Series of validation measurements at NNSS/DAF

o 1 2 3 4 50 1 2 3 4 5

e, [MeV] g, [MeV]
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Backup
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Fission Never Ends ...

Plus Ultra : there is more beyond

(motto of the great scientific

pioneers of the 16th & 17th - SummicAngliz
Century) ;\ EC. NCELLARIT,

Francis Bacon’s Novum Organum
(1620): Straits of Gibraltar
flanked by the colossal pillars
of Hercules.

Inscription: Many shall pass too
and fro and knowledge shall
be increased
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Resolution of Fission Yield Basis, for Plutonium.
Confirmation of Energy-Dependence in
Neodynium-147 Fission Product Yield

-LANL-LLNL-TUNL

239Py(n,f)14’Nd -TUNL is SSAA Funded

New 2.6
TUNL
Data

---------- ¢ Nethaway
® [isman
W Rajagopalan
® Koch
-Remaining chaduick : (Laabeskiriya
open aurec

questions will 17 |
be solved by

Nearly identical at thermal

the SPIDER 0 05 1 15 2 25
/detector Energy (MeV)
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by ~1, and reduce E*
available for prompt neutron

emission by ~1 MeV, hence

reduce <v,>

Early studies: J.E.Lynn, Phys. Lett. 18, 31 (1965);
Stavinsky, V. and Shaker, M.O., Nucl. Phys. 62, 667 (1965).
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Fission Fragment Angular Distributions

= Original idea of A. Bohr (1959) following the experimental
observation of strong anisotropies in fission fragment angular
distributions
J
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J M=-—J
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Fig. 6. Theoretical fission fragm lar distributions for fission through pure states,
Q W(KI).
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Lamphere, Nucl. Phys. A38, 661 (1962)
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Incident-Energy Dependent Anisotropy
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Ongoing experimental work at LANSCE, V. Kleinrath, F. Tovesson
Also, talk by L.S. Leong
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Y spectrum [MeV'l]

¥ spectrum [MeV'l]

The Future is

m  Monte Carlo Hauser-Fesbach code CGMF
m  Stetcu, Talou, Kawano, Jandel, PRC 90, 024617 (2014)

= Ullmann et al.,
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Need for accurate pre-neutron emission fission fragment
yields in mass, charge and TKE as a function of

excitation energy!

(many talks/posters on this at FIESTA)
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